Posted on

soil weed seed bank

The actual seed longevity in the soil depends on an interaction of many factors, including intrinsic dormancy of the seed population, depth of seed burial, frequency of disturbance, environmental conditions (light, moisture, temperature), and biological processes such as predation, allelopathy, and microbial attack (Davis et al., 2005; Liebman et al., 2001). Understanding how management practices or soil conditions can modify the residence time of viable seeds can help producers minimize future weed problems. For example, seeds of 20 weed species that were mixed into the top 6 inches of soil persisted longer in untilled soil than in soil tilled four times annually (Mohler, 2001a), which likely reflects greater germination losses in the disturbed treatment. On the other hand, a single tillage can enhance the longevity of recently-shed weed seeds, because buried seeds are usually more persistent compared to those left at the surface where they are exposed to predators, certain pathogens, and wide fluctuations of temperature and moisture. However, soilborne pathogens may also contribute to attrition of buried seeds, even in large-seeded species like velvetleaf (Davis and Renner, 2008).

The first type of withdrawal—germination leading to emergence—is, of course, how weeds begin to compete with and harm crops each season. It is also the foremost mechanism for debiting the seed bank, an effective strategy if emerged seedlings are easily killed by subsequent cultivation or flaming (the stale seedbed technique, for example). Even in species with relatively long-lived seeds such as pigweeds, velvetleaf, and morning glory, the vast majority of weed emergence from a given season’s seed rain takes place within two years after the seeds are shed (Egley and Williams, 1990). Thus, timely germination (when emerging weeds can be readily killed) can go far toward minimizing net deposits into the seed bank from recent weed seed shed. Knowing when to promote or deter weed seed germination, and how to do so for the major weeds present, are important skills in seed bank management.

The Iowa State University Cooperative Extension Service has evaluated seed germination response of common weeds of field corn in relation to GDD calculated on a base temperature of 48°F beginning in early spring, and categorized the weeds into germination groups (cited in Davis, 2004). For example, winter annuals like field horsetail and shepherd’s purse germinate before any GDD accumulate in the spring; giant ragweed and common lambsquarters require fewer than 150 GDD and therefore emerge several weeks before corn planting; redroot pigweed, giant foxtail, and velvetleaf germinate at 150–300 GDD, close to corn planting time; whereas large crabgrass and fall panicum require over 350 GDD and usually emerge after the corn is up. A few species, such as giant ragweed, emerge only during a short (<3 week) interval, whereas others, such as pigweed and velvetleaf, continue to emerge for an extended period (>8 weeks). Knowing when the most abundant species in a particular field are likely to emerge can allow the farmer to adjust planting dates and cultivation schedules to the crop’s advantage.

Evaluating the Weed Seed Bank

Use these strategies to maximize losses (withdrawals) from the weed seed bank:

Although seed longevity of agricultural weeds is a cause for notoriety, and a proportion of the population may remain viable for several years or decades, most of the seeds of many weed species will either germinate or die shortly after being dispersed from the parent plant. The seeds of many grasses are particularly short lived. For example, in a field study conducted near Bozeman, MT, wild oat seeds were incorporated into the top four inches of a wheat–fallow field, and approximately 80 percent of them died during the first winter (Harbuck, 2007). It is important to note, however, that postdispersal survival varies widely among weed species.

Because soil microorganisms can play a role in weed seed decay, maintaining a high level of soil biological activity through good organic soil management might be expected to shorten the half-life of weed seed banks. In addition, incorporation of a succulent legume or other cover crop may either stimulate weed seed germination by enhancing soil nitrate N levels, or promote weed seed or seedling decay as a result of the “feeding frenzy” of soil microorganisms on the green manure residues. However, the potential of these practices as weed seed bank management tools requires verification through further research.

The weed seed bank is the reserve of viable weed seeds present on the soil surface and scattered throughout the soil profile. It consists of both new weed seeds recently shed, and older seeds that have persisted in the soil from previous years. In practice, the soil’s weed seed bank also includes the tubers, bulbs, rhizomes, and other vegetative structures through which some of our most serious perennial weeds propagate themselves. In the following discussion, the term weed seed bank is defined as the sum of viable weed seeds and vegetative propagules that are present in the soil and thus contribute to weed pressure in future crops. Agricultural soils can contain thousands of weed seeds and a dozen or more vegetative weed propagules per square foot.

14%. Multiple cohorts were produced between February and October. No-till systems produced higher emergence rates than conventional tillage systems. Seedlings of B. tournefortii did not emerge from 5 cm soil depth; therefore, diligent tillage practices without seedbank replenishment could rapidly reduce the presence of this weed. A soil-moisture study revealed that at 25% of water-holding capacity, B. tournefortii tended to produce sufficient seeds for reinfestation in the field. Brassica tournefortii is a cross-pollinated species, and its wider emergence time and capacity to produce enough seeds in a dry environment enable it to become widespread in Australia. Early cohorts (March) tended to have vigorous growth and high reproduction potential. This study found B. tournefortii to be a poor competitor of wheat (Triticum aestivum L.), having greater capacity to compete with the slow-growing crop chickpea. Therefore, control of early-season cohorts and use of rotations with a more vigorous crop such as wheat may reduce the seedbank. The information gained in this study will be important in developing better understanding of seed ecology of B. tournefortii for the purpose of developing integrated management strategies.

Our systems have detected unusual traffic activity from your network. Please complete this reCAPTCHA to demonstrate that it’s you making the requests and not a robot. If you are having trouble seeing or completing this challenge, this page may help. If you continue to experience issues, you can contact JSTOR support.

Block Reference: #99620bf3-0704-11ec-96b9-45434b504464
VID: #(null)
Date and time: Fri, 27 Aug 2021 07:01:27 GMT